Создана полная микроэлектромеханическая версия легендарного микропроцессора Intel 4004

Группа ученых, в которую входили Ральф Меркл (Ralph Merkle) и Роберт Фреитас (Robert Freitas), продемонстрировала, что при помощи нескольких базовых мироэлектромеханических компонентов может быть создана полноценная тьюринговая вычислительная система. Используя 2-микронную MEMS-технологию, эти исследователи создали полный микроэлектромеханический аналог 4-битного процессора Intel 4004, который появился на свет в 1971 году и стал первым микропроцессором, доступным на коммерческом рынке.

Основным микроэлектромеханическим компонентом системы стал логический элемент 2И-НЕ, вся остальная логика процессора, включая регистры, триггеры, память и т.п., была построена на основе этого базового компонента. Структура созданного MEMS-процессора более проста, что другие попытки реализаций механических тьюринговых вычислительных систем. Но ни в одном из компонентов нет никаких трущихся частей, это обуславливает малое количество энергии, требующейся для работы устройства, и его достаточно высокое быстродействие.

Как уже упоминалось выше, для создания MEMS-процессора была использована технология Multi-User MEMS Processes (MUMPs), которая обеспечивает производство отдельных элементов с минимальным размером в 2 микрона. Для создания комплементарной пары транзисторов требуется площадь 640 на 1017 микронов, а на кремниевой подложке, площадью 2.8 квадратных сантиметра, можно разместить 2200 транзисторов, что эквивалентно количеству транзисторов в микропроцессоре Intel 4004.

Потенциал существующих MEMS-технологий огромен, кроме того, что в ближайшем будущем размеры элементов микроэлектромеханических устройств могут быть уменьшены, за счет чего будет увеличено их быстродействие и экономичность. Уже сейчас на базе существующих микроэлектромеханических компонентов можно создавать логические элементы AND, NAND, NOR, NOT, OR, XNOR и XOR, что, в свою очередь, позволит создавать очень сложные вычислительные узлы и устройства.

Микроэлектромеханические компьютеры, подобные описываемому здесь процессору, имеет потенциал для обеспечения производительности в 1 триллион гигафлопс на ватт. Это в 100 миллиардов раз эффективней самых «зеленых» из существующих суперкомпьютеров, которые обеспечивают производительность порядка 18 гигафлопс на ватт.

Читать ещё:  LCD или DLP: нюансы выбора проекторов

Прочитав все описанное выше, можно задаться вопросом, зачем нужна разработка таких экзотических вычислительных систем, если традиционные кремниевые системы и так неплохо справляются с возлагаемыми на них задачами? Однако, множество исследовательских групп занимаются сейчас разработками альтернативных вычислительных технологий, в том числе механических, биологических, биохимических и т.п. Ведь такие технологии в некоторых случаях имеют целый ряд преимуществ перед кремниевой электроникой. Механические системы, к примеру, могут работать при более низких и более высоких температурах, на них не оказывает пагубное влияние радиационное излучение, что делает их идеальными кандидатами на использование в космосе и в других областях с экстремальными условиями эксплуатации.

Опубликовано: 06.05.2019 в 11:00

Автор:

Категории: Новости технологий

Оставить комментарий

avatar