Виды картографических проекций

Картографические проекции сегодня – это математические способы изображения всего земного эллипсоида или его части на плоскости, систематическое преобразование широт и долгот с поверхности сферы на плоскость.

Для создания географических карт выполняют две последовательных операции:

  • Перенесение (проектирование) поверхности геоида с его сложным рельефом на поверхность эллипсоида вращения или шара.
  • Дальнейшее его проектирование на плоскость (преобразование системы географических координат в декартовы) с использованием одной из картографических проекций.

При этом картографы пытаются добиться как можно меньшего количества искажений. Сделать мелкомасштабную карту совсем без искажений невозможно. На крупномасштабных (топографических) картах искажения почти отсутствуют. В зависимости от назначения карты одни погрешности допустимы, другие нет. Поэтому и существуют разные типы проекций, предназначенные для сохранения некоторых свойств сферы за счёт других её свойств.

Проекция на шар — глобус. Автор: UBC Library Digitization Centre

Виды искажений при использовании картографических проекций

Разложить на плоскости эллипс или шар очень трудно, для того, чтобы убедиться в этом, можно попробовать это сделать на практике. Сложить кусочки апельсиновой кожуры так, чтобы между ними не было пустых мест и попробовать получить непрерывную ровную плоскость. Корка соберётся в складки, она не уложится без промежутков.

При любом способе разложения шара на плоскость присутствует один или несколько типов искажения:

  • базовое – искажение расстояний (длин линий), от него зависит степень других видов деформаций. Признак: между соседними параллелями отрезки меридианов неодинаковы по длине;
  • площадей. При таком искажении между соседними параллелями форма и величина (а значит и площадь) ячеек неодинакова;
  • углов – углы между определённым направлением на местности и на карте не совпадают. Узнать его можно по тому, что углы между параллелями и меридианами не являются прямыми;
  • форм. При одинаковой площади форма клеток, находящихся на одной широте, разная.

При этом типы искажений взаимозависимы, при уменьшении одного из показателей увеличивается другой. В зависимости от назначения карты, на ней присутствуют места с нулевым искажением, с удалением от него количество искажений увеличивается. Поэтому на карте есть три вида масштаба:

  • основной (тот, что подписан), действующий на линии нулевого искажения,
  • частные (определяются при помощи эллипса искажений), их может быть бесконечно много;
  • средний (совокупность частных масштабов отрезка).

При выборе типа картографической проекции сначала строят изоколы – изолинии, соединяющие точки с одинаковым искажением.

Изоколы искажения углов
Источник: /ds04.infourok.ru/uploads/ex/0617/00148bfe-04623ef1/hello_html_329bd6b7.jpg

Проекция Меркатора

В 1569 г. фламандский географ Герхард Меркатор (латинизированное имя Герарда Кремера) разработал и впервые применил в своем атласе (полное название «Атлас, или Космографические рассуждения о сотворении мира и вид сотворенного») равноугольную цилиндрическую проекцию, названную впоследствии его именем и ставшую одной из основных и самых распространенных картографических проекций.

Для построения цилиндрической проекции Меркатора земной геоид помещают внутри цилиндра так, чтобы геоид касался цилиндра по экватору. Проекцию получают, проводя лучи из центра геоида до пересечения с поверхностью цилиндра. Если после этого цилиндр разрезать вдоль оси и развернуть, то получится плоская карта поверхности Земли. Образно это можно представить следующим образом: глобус оборачивается листом бумаги по экватору, в центр глобуса помещается лампа и на листе бумаги отображаются спроецированные лампой изображения материков, островов, рек и т. п. Если бы на бумагу был нанесен способный засвечиваться слой, то, развернув лист, мы получили бы готовую карту.

Полюса в такой проекции расположены на бесконечном расстоянии от экватора, и, следовательно, не могут быть изображены на карте. На практике карта имеет верхний и нижний пределы широт – примерно до 80° СШ и ЮШ.

Параллели и меридианы картографической сетки изображаются на карте параллельными прямыми линиями, при этом они всегда перпендикулярны. Расстояния между меридианами одинаковы, а вот расстояние между параллелями равно расстоянию между меридианами вблизи экватора, но быстро увеличивается при приближении к полюсам.

Масштаб в этой проекции не является постоянным, он увеличивается от экватора к полюсам как обратный косинус широты, но масштабы по вертикали и по горизонтали всегда равны.

Равенство вертикального и горизонтального масштабов обеспечивает равноугольность проекции – угол между двумя линиями на местности равен углу между изображением этих линий на карте. Благодаря этому хорошо отображается форма небольших объектов. Но искажения площади увеличиваются по направлению к полярным регионам. Например, несмотря на то, что Гренландия составляет всего одну восьмую размера Южной Америки, в проекции Меркатора она представляется больше. Большие искажения площадей делают проекцию Меркатора непригодной для общегеографических карт мира.

Линия, проведенная между двумя точками на карте в этой проекции, пересекает меридианы под одним и тем же углом. Эта линия называется румбом или локсо­дромией. Надо отметить, что эта линия не описывает кратчайшее расстояние между точками, но в проекции Меркатора всегда изображается прямой линией. Этот факт делает проекцию идеальной для нужд навигации. Если мореплаватель желает отправиться, например, из Испании в Вест-Индию, все, что ему нужно сделать, это провести линию между двумя точками, и штурман будет знать, какого направления по компасу постоянно придерживаться, чтобы приплыть к месту назначения.

Равнопромежуточные проекции

Карты в равнопромежуточных проекциях сохраняют расстояния между определенными точками. Правильный масштаб не сохраняется никакой проекцией на всей карте, однако, в большинстве случаев существует одна или более линий на карте, вдоль которых масштаб сохраняется постоянным. В большинстве равнопромежуточных проекций есть одна или несколько линий, длина которых на карте равна (в масштабе карты) длине соотносимой с нею линии на глобусе, независимо от того, является ли эта линия большой или малой окружностью, прямой или кривой линией. О таких расстояниях говорят, что они истинные. Например, в Синусоидальной проекции экватор и все параллели имеют свою истинную длину. В других равнопромежуточных проекциях могут быть истинными экватор и все меридианы. Иные проекции (например, равнопромежуточная проекция двух точек) показывают истинный масштаб между одной или двумя точками и каждой другой точкой на карте. Необходимо иметь в виду, что ни одна проекция не бывает равнопромежуточной по отношению ко всем точкам на карте.

  • Более подробно о синусоидальной проекции
  • Более подробно о двухточечной равнопромежуточной проекции

С точностью до сантиметра


Для применения проекции Меркатора (как, впрочем, и любой другой) необходимо определить систему координат на земной поверхности и корректно выбрать так называемый референц-эллипсоид – эллипсоид вращения, приближенно описывающий форму поверхности Земли (геоида). Для местных карт в России в качестве такого референц-эллипсоида с 1946 г. используется эллипсоид Красовского. В большинстве европейских стран вместо него используется эллипсоид Бесселя. Самым популярным в наши дни эллипсоидом, предназначенным для составления общемировых карт, является мировая геодезическая система 1984 г. WGS-84. Она определяет трехмерную систему координат для позиционирования на земной поверхности относительно центра масс Земли, погрешность составляет менее 2 см. Классическая равноугольная цилиндрическая проекция Меркатора применяется к соответствующему эллипсоиду. Так, например, сервис Яндекс.Карты использует эллиптическую WGS-84 проекцию Меркатора.

В последнее время в связи со стремительным развитием картографических веб-сервисов большое распространение получил другой вариант проекции Меркатора – на базе сферы, а не эллипсоида. Этот выбор обусловлен более простыми расчетами, которые могут быть быстро выполнены клиентами этих сервисов прямо в браузере. Часто эту проекцию называют «сфериче­ским Меркатором». Такой вариант проекции Меркатора используется сервисами Google Maps, а также 2ГИС.

Еще одним известным вариантом проекции Меркатора является равно­угольная проекция Гаусса-Крюгера. Она была введена выдающимся немецким ученым Карлом Фридрихом Гауссом в 1820—1830 гг. для картографирования Германии – так называемой ганноверской триангуляции. В 1912 и 1919 гг. ее развил немецкий геодезист Л. Крюгер.

По сути, она является поперечной цилиндрической проекцией. Поверхность земного эллипсоида делится на трех- или шестиградусные зоны, ограниченные меридианами от полюса до полюса. Цилиндр касается среднего меридиана зоны, и она проецируется на этот цилиндр. Всего можно выделить 60 шестиградусных или 120 трехградусных зон.

В России для топографических карт масштаба 1 : 1000000 применяют шестиградусные зоны. Для топографических планов масштаба 1 : 5000 и 1:2000 применяются трехградусные зоны, осевые меридианы которых совпадают с осевыми и граничными меридианами шестиградусных зон. При съемках городов и территорий под строительство крупных инженерных сооружений могут быть использованы частные зоны с осевым меридианом посередине объекта.

Многомерная карта

Современные информационные технологии позволяют не просто нанести контуры объекта на карту, но и менять его вид в зависимости от масштаба, связать с его географическим положением множество других атрибутов, таких как адрес, информация о расположенных в данном здании организациях, количество этажей и т. п., делая электронную карту многомерной, разномасштабной, интегрируя в ней одновременно несколько справочных баз данных. Для обработки этого массива информации и представления его в удобном для пользователя виде необходимы достаточно сложные программные продукты, так называемые геоинформационные системы, разработку и поддержку которых могут осуществить лишь достаточно крупные, обладающие необходимым опытом IT-компании. Но, несмотря на то, что современные электронные карты мало похожи на своих бумажных предшественников, все равно в их основе лежат картография и тот или иной способ отображения земной поверхности на плоскость.

Для иллюстрации методов современной картографии можно рассмотреть опыт работы компании «Дата Ист» (Новосибирск), занимающейся разработкой программного обеспечения в области геоинформационных технологий.

Проекция, которая выбирается для построения электронной карты, зависит от назначения карты. Для карт общего пользования и для навигационных карт, как правило, применяется проекция Меркатора с системой координат WGS-84. Например, эта система координат использовалась в проекте «Мобильный Новосибирск», созданном по заказу мэрии города Новосибирска для городского муниципального портала.

Для крупномасштабных карт с целью минимизации линейных искажений используются как зональные равноугольные проекции (Гаусса-Крюгера), так и неравноугольные проекции (например, коническая равно­промежуточная проекция – Equidistant conic).

Сегодня карты создаются с широким привлечением аэрофотосъемки и спутниковых фотографий. Для качественной работы над картами в компании «Дата Ист» создан архив космических снимков, охватывающих территории Новосибирской, Кемеровской, Томской, Омской областей, Алтайского края, Республик Алтай и Хакасия, других регионов России. С помощью этого архива, кроме крупномасштабных карт территории, можно изготавливать схемы отдельных объектов и участ­ков под заказ. При этом в зависимости от территории и необходимого масштаба применяется та или иная проекция.

Со времен Меркатора картография изменилась радикально. Информационная революция затронула эту область человеческой деятельности, наверное, больше всех. Вместо томов бумажных карт теперь каждому путешественнику, туристу, водителю доступны компактные электронные навигаторы, содержащие в себе массу полезной информации о географических объектах.

Но суть карт осталась той же – показать нам в удобном и ясном виде, с указанием точных географических координат, расположение объектов окружающего нас мира.

Литература

ГОСТ Р 50828-95. Геоинформационное картографирование. Пространственные данные, цифровые и электронные карты. Общие требования. М., 1995.

Капралов Е. Г. и др. Основы геоинформатики: в 2 кн. / Учеб. пособие для студ. вузов / Под ред. Тикунова В. С. М.: Академия, 2004. 352, 480 c.

Жалковский Е. А. и др. Цифровая картография и геоинформатика / Краткий терминологический словарь. М.: Картгеоцентр-Геодезиздат, 1999. 46 с.

Баранов Ю. Б. и др. Геоинформатика. Толковый словарь основных терминов. М.: ГИС-Ассоциация, 1999.

ДеМерс Н. Н. Географические информационные системы. Основы.: Пер. с англ. М.: Дата+, 1999.

Карты любезно предоставлены ООО «Дата Ист» (г. Новосибирск)

: 8 Ноя 2012 , Недаром помнит вся Россия , том 46, №4

Типы проекций по характеру искажений

Для разных целей нужны карты с отсутствием тех или иных видов искажений. При помощи разных проекций можно сделать так чтобы на них отсутствовали погрешности либо углов, либо длин, либо площадей. Чем больше искажаются углы, тем меньше искажаются площади и наоборот. По характеру искажений все картографические проекции делят на:

  • равноугольные (конформные);
  • равновеликие (эквивалентные);
  • произвольные:
    • равнопромежуточные (эквидистантные).

Равноугольные картографические проекции

На картах, построенных по этому типу, нет искажений направлений и углов. Направления на местности совпадают с таковыми на карте, прямые линии на местности остаются прямыми на карте. Они используются для прокладки точных маршрутов и применяется на навигационных и топографических картах.

Зато на них сильно изменены площади объектов Земли и линейный масштаб карты зависит от положения на ней данной точки. Типичный пример равноугольной проекции – цилиндрическая проекция Герхарда Меркатора (Герарда Кремера), созданная ещё в 1569 г и используемая в морской навигации до сих пор. Примером использования Проекции Меркатора является равноугольная проекция Гаусса-Крюгера.

В этой проекции создаются отдельные океанологические, климатические и геофизические карты.

Проекция Меркатора.
Файл доступен по лицензии: Creative Commons Attribution-Share Alike 3.0 Unported

Равновеликие картографические проекции

Это проекции для построении карт, на которых нет искажения площадей (масштаб площадей имеет везде одну и ту же величину), зато сильно растёт погрешность форм и углов (материки и океаны в высоких широтах сплющиваются). Картами, построенными в равновеликих проекциях, удобно пользоваться для расчета площадей, например типов почв, посадок кукурузы, облесенности материков, загрязнения океана или радиоактивного загрязнения суши и др.

Их применяют для составления климатических, почвенных, геофизических, геологических, зоогеографических, геоботанических, экономических, исторических, этнографических, административных карт.

Пример равновеликой проекции. Автор: CC BY-SA 3.0

Произвольные картографические проекции

Углы и площади здесь искажаются, но значительно меньше, чем в предыдущих двух проекциях. Поэтому они наиболее используемы. Произвольные картографические проекции не относятся ни к равновеликим, ни к равноугольным.

Произвольная проекция Робинсона. Автор: CC BY-SA 3.0

Равнопромежуточные картографические проекции

Это тип произвольных картографических проекций. В них масштаб длин одного из главных направлений остаётся неизменным. Пример: прямая азимутальная проекция. Равнопромежуточные проекции используют для создания общегеографических, физических, тектонических, политических и др. видов карт.

Характер искажения всегда входит в общее название проекции (равновеликая азимутальная, равноугольная коническая, равновеликая цилиндрическая и т.д.).

Интересно,

что древнейшей картографической проекцией является гномическая проекция, применённая на картах звёздного неба Фалесом Милетским ещё в Древней Греции.

Равнопромежуточная коническая проекция. Автор: CC BY-SA 3.0

Классификация географических проекций по геометрической фигуре, являющейся вспомогательной поверхностью

На плоскость эллипсоид проектируют при помощи геометрических фигур, а поверхности, на которые он проектируется, могут быть секущими (разрезающей) фигуру или касательными (соприкасается, но не разрезает глобус) к ней. При этом на полученной карте касательные и секущие линии (стандартные) представлены неискажёнными.

Проекции также бывают по-разному ориентированы.

  • Нормальными называют проекции, в которых оси вспомогательной поверхности совмещаются с осью земного эллипсоида или шара, а спроектированная поверхность размещается касательно к полюсу.
  • Поперечными – ось располагают под прямым углом к оси Земли.
  • Наклонными – под любым другим (непрямым) углом к оси Земли.

Нормальная, поперечная и косая ориентации площади проекции. Автор: Rylem

Поверхности, которые могут быть развёрнуты на плоскость или лист без растяжений, разрыва или усадки, называются разрабатываемыми поверхностями. Ими являются цилиндр, конус и плоскость. Поэтому по вспомогательной поверхности проекции делятся на:

  • цилиндрические – вспомогательная поверхность – боковая цилиндра, касательная к эллипсоиду или секущая эллипсоида. Меридианы изображаются равностоящими параллельными прямыми, а параллели – прямыми, перпендикулярными меридианам. Пример – нормальная равноугольная цилиндрическая проекция Меркатора.

Цилиндрическая, коническая, азимутальная типы проекций.
Автор: Rylem — собственная работа, CC BY-SA 4.0

  • псевдоцилиндрические – центральный меридиан на них представлен в виде отрезка прямой, другие меридианы длиннее центрального и изогнуты наружу. Параллели псевдоцилиндрических проекций – прямые линии.

Псевдоцилиндрическая проекция

  • конические – боковая поверхность секущей или касательной конуса. Конической называется любая проекция, в которой меридианы представлены прямыми линиями, выходящими из одного центра и равноудаляющимися к периферии, а параллели – дуги, центрированные на вершине. При построении картографы чаще выбирают 2 основные параллели, которые могут быть секущими или касательными. Искажения масштаба и формы на них низкие. К северу и югу от стандартных параллелей расстояния растягиваются, а между стандартными параллелями расстояния сжимаются. Может использоваться и одна стандартная параллель, тогда с удалением от неё расстояния растягиваются. Применяется для территорий, вытянутых вдоль параллелей, например, все карты России построены в конических проекциях.
  • псевдоконические – проекции, где центральный меридиан – прямая, остальные меридианы кривые линии, а параллели – прямые, промежутки между которыми уменьшаются к полюсам.
  • азимутальные – вспомогательной поверхностью служит секущая или касательная плоскость. Параллели на них – полные окружности. Меридианы – их радиусы. По меридианам такая проекция является равнопромежуточной и сохраняет вдоль них главный масштаб. Именно разновидностью азимутальной проекции является первая известная на Земле гномическая проекция.

Типы азимутальных проекций

  • поликонические – боковые вспомогательные поверхности нескольких касательных конусов, каждая из которых затем разворачивается на плоскость. Экватор и средний меридиан – перпендикулярные прямые, параллели – дуги, выпуклостью направленные к экватору, меридианы – кривые малой кривизны, направленные выпуклой стороной от центрального меридиана.
  • условные – те, что ни входят ни в один из выше перечисленных классов. Параллели и меридианы на них являются кривыми очень разного вида.

Полное название проекций может быть следующим: косая азимутальная равновеликая, нормальная равноугольная цилиндрическая, произвольная поликоническая и т.д.

Поработайте дома

1.Заполните в тетради таблицу, отражающую характеристики различных картографических проекций.

Азимутальная проекция Коническая проекция Цилиндрическая проекция
Основа для построения проекции
Как показаны меридианы
Как показаны параллели
Максимальные искажения
Минимальные искажения
Для каких карт используется

2.Определите, в каких проекциях построены карты атласа. Какой вид проекции использовался чаще? Почему?

Выбор проекции в зависимости от величины территории

  • Карты мира по характеру искажения строят в произвольных, равновеликих, реже в равноугольных проекциях. По виду сетки – применяют цилиндрические, поликонические или псевдоцилиндрические, реже псевдоазимутальные.
  • Карты полушарий строят в азимутальной проекции, чтобы передать западное и восточное полушария – в равновеликой, северное и южное – в равнопромежуточной.
  • Для построения карт материков в основном используют азимутальные проекции.
  • Для карт России – нормальная коническая с двумя стандартными параллелями. Для начальных школьных карт – косая произвольная цилиндрическая.

Проекция карт России


Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий